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A three-dimensional mode of spatial instability, related to the temporal algebraic 
growth that determines lift-up in parallel flow, is found to occur in the two-dimensional 
boundary layer growing over a flat surface. This unstable perturbation can be framed 
within the limits of Prandtl’s standard boundary-layer approximation, and therefore 
develops at any Reynolds number for which the boundary layer exists, in sharp 
contrast to all previously known flow instabilities which only occur beyond a sharply 
defined Reynolds-number threshold. It is thus a good candidate for the initial linear 
amplification mechanism that leads to bypass transition. 

1. Introduction 
The stability or instability of a physical system may be judged differently according 

to the mathematical model that is used to describe it. Whereas an ideally infinite fluid 
boundary layer sooner or later becomes unstable according to the Navier-Stokes 
equations, ever since Stewartson’s (1957) and Libby & Fox’s (1964) linear analyses of 
small perturbations to the self-similar two-dimensional boundary layer common 
wisdom has had it that the boundary layer as described by the Prandtl equations is 
intrinsically stable; additional effects, which are present in the full Navier-Stokes 
model but not in Prandtl’s boundary-layer equations and become non-negligible above 
a certain Reynolds-number threshold, have always been considered to be the only 
possible cause of instability. Examples of such effects are the pressure coupling of 
short-longitudinal-wavelength two-dimensional perturbations (Tollmien-Schlichting 
waves) and the centrifugal coupling of spanwise-varying perturbations over a concave 
wall (Gortler vortices). Neither exists within the context of Prandtl’s boundary-layer 
theory, but only in appropriate extensions of it; as far as Prandtl’s equations are valid, 
the complete set of eigenmodes determined by Libby & Fox have a negative-power 
dependence on the streamwise coordinate x, the least damped of them dying out as x-’. 
(Stewartson had found an analytical expression of this dominant mode and a physical 
explanation of why the associated exponent is - 1 exactly.) However, Stewartson’s and 
Libby & Fox’s analyses are completely two-dimensional, and presume a two- 
dimensional perturbation. 

Recent developments in the study of the so-called ‘algebraic growth’ (e.g. Landahl 
1980; Hultgren & Gustavsson 1981; Boberg & Brosa 1988; Gustavsson 1991; Butler 
& Farrell 1992; Reddy & Henningson 1993; Trefethen et al. 1993) have shed light on 
the fact that the response of a two-dimensional flow to three-dimensional perturbations 
can be even qualitatively different from its response to two-dimensional ones. By a 
phenomenon of resonance between the Rayleigh and Squire equations, a spanwise- 
oscillating perturbation can arise which exhibits a linear growth in time even when an 
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eigenvalue analysis would indicate stability (Ellingsen & Palm 1975). Once viscosity is 
put back into the model, a slow exponential decay superposes over the linear growth, 
so that the perturbation must eventually die out; the combined outcome is that, as 
remarked by Hultgren & Gustavsson (1981), the inviscid algebraic growth prevails for 
a possibly long but finite intermediate stage, and after this stage the asymptotic viscous 
decay sets in (in parallel flow, that is). 

However, what happens when a phenomenon of algebraic growth takes place inside 
a spatially broadening boundary layer? The damping effect of viscosity now weakens 
with distance, and it is not a priori evident whether it can still eventually overcome the 
algebraic growth. This is the question that the present paper originated from. 

2. Libby-Fox-Stewartson theory 

two-dimensional Prandtl equation, i.e. in streamfunction form 
Let us consider boundary-layer flow over a flat plate, governed by the usual steady 

9, h, - 9 z  9,, = 9,vv. 

Fo, 777 +% 4, ‘17 = 0, 

(1) 
Blasius’ similarity solution, 9 = x ~ ’ ~ F , ( ~ / x ~ / ~ ) ,  obeys the well-known ordinary 
differential equation 

where 7 = y/xli2 and the boundary conditions are 4(0 )  = 4, ,(O) = 0, 4, ,(a) = 1. If 
we change variables from @(x,y) to F(x, 7) = ~ F / X ~ ’ ~ ,  without assuming I; necessarily 
to be a function of 7 only, we obtain 

(2) 

which is completely equivalent to (1) and, of course, admits (2) as a particular case. 
Libby & Fox (1964) sought solutions of the form F = &(T) + SF(x, 7) by linearizing (3) 
with respect to the small perturbation SF. The linearized equation turns out to admit 
eigensolutions of the form SF = x-‘N(q), with N(q) and r determined by the following 
eigenvalue problem : 

N(0) = N,(O) = N,(co) = 0. One of the eigensolutions can be determined analytically, 
as discovered by Stewartson (1957), if advantage is taken of the translational symmetry 
of the original equation (1). In particular, 9 = (x + c)l/’ &[y/ (x  + c)liZ] represents 
another exact solution of (1) (corresponding to a different initial condition); by 
linearizing with respect to c one finds y ? c , / ~ l / ~  = & ( y / ~ ” ~ )  + c[F,(q) - 74, , (7)] /2x.  
Therefore N ,  = 4(7 ) -74J7)  is an exact solution of (4) corresponding to the 
eigenvalue Y, = 1, as can also be independently verified.The first ten eigenvalues were 
numerically determined by Libby & Fox to be 1, 1.887,2.8 17,3.800,4.740,5.6,6.6,7.5, 
8.4, 9.3 (more accurate values are given here in table 1). Libby & Fox were also able 
to transform (4) into a self-adjoint problem, by defining an auxiliary variable H as 
H = (N/F,,  J,,. It turns out that H obeys a second-order Sturm-Liouville equation, 
whence follows that an infinite discrete sequence of positive real eigenvalues r ,  exists 
and that the set of eigenmodes is complete. 

Although the calculation of eigenmode amplitudes from initial conditions imposed 
at non-zero x is discussed at length in Libby & Fox (1964), they do not seem to have 
realized that the limit for x --f 0 of the left eigenfunctions of their equation exists, and 
therefore the mode amplitudes can be calculated from incident-stream initial conditions 
given at the leading edge. We give this result in Appendix A. 
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k 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

rP 
1 
1.886820416 
2.8 14 356 780 
3.756605 180 
4.707 176465 
5.663 269971 
6.623387663 
7.586856793 
8.555 3 1 7 860 
9.539 710 607 

C k  
9.069301 518 
4.591 899002 
3.259 806394 
2.590 863 034 
2.180 249 834 
1.899019184 
1.692 51 3402 
1.53242 1057 
1.397265714 
1.259 676 434 

CA 

3.01 1528 10 

0.067 952 25 1 

3.85743 x 10 
-2.0861 x lo-" 

9.500 x lo-; 
-3.73 x 

1.28 x 
- 3.5 x lo-" 

-0.571 22779 

- 5.81 1340 x 10F 

TABLE 1. Parameters of the Libby & Fox modes 

3. Three-dimensional boundar y-la yer perturbations 
One of two different three-dimensional formulations of the boundary-layer 

approximation can generally be adopted, depending on whether the spanwise scale of 
the phenomenon being considered is comparable to the longitudinal scale L or to the 
normal scale S = (vL/U)' / '  (where v denotes the kinematic viscosity and U the 
dimensional value of the outer velocity). The first case is typically produced by a 
three-dimensional outer stream, and is governed by the equations (e.g. Schlichting 
1968, p. 239) 

U , + U , + M ' ,  = 0 ,  (5  a )  
uu, + Z'U?, + wu, = +( u2 + w2)x + uy,, ( 5  b) 

UM?, + Z'W, + IVW, = ;( u2 + W2), + w,,, ( 5  c) 

with boundary conditions u(x, 0, z )  = u(x, 0, z )  = w(x, 0, z )  = 0, u(x, co, z )  = U(x, z )  = 

Qz, w(x, a , z )  = W(x,z) = Q, (where Q is the potential at the wall of the imposed 
irrotational outer stream). The second case is typical of three-dimensionalities 
originating inside the boundary layer itself, and leads to the equations (used e.g. by 
Hall 1983 for the study of the Gortler instability, and by Luchini 1995 and Luchini & 
Trombetta 1995 for the boundary layer over a grooved surface) 

u ,+zu+w,  = 0, 

uu, + vuu + wu, = uu, + uy, + u,,, 

uu, + zicy + wu, +py = u,, + t' , , ,  
uw + CWU + ww, +p,  = w, , + wzz, 

with boundary conditions u(x, 0, z )  = v(x, 0, z)  = ni(.u, 0,z)  = 0, u(x, co, z )  = U(x),  
w(x, x, =) = 0, p(x, cc, z ) .  Both systems of equations ( 5 )  and (6) are parabolic. Neither 
allows r to vanish at infinity. 

If ( 5 )  and (6) are linearized in a neighbourhood of the two-dimensional Blasius 
solution u,, = 4), ,,(y/x'/'), and the perturbation is assumed to have the complex- 
exponential form u = u,, + Su(x, y )  ela, they respectively become 

(7 a )  
(7 h) 
(7 c )  

Su, + Sc, + iaSw = 0, 

U" Su, + C" Suy + uo, , su + u,,, Sc = su,,, 

uo Sn + c,, Sw, = Sw,,, 
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Su, + Sv, + ia8w = 0, (8 4 
uo Su, + vo Su, + uo, Su + uo, , 6v = Su,, - aZSu, 

uo6v,+v,Sv,+vo,~Su+vo,,6v+6p, = 6 v y y - a 2 ~ v ,  (8 c) 

uo Sw, + vo Sw, + iaSp = 6w,, - a2Sw. (8 4 

Equations (8) appear to offer the most general context in which to study the evolution 
of three-dimensional perturbations imposed over the Blasius flat-plate boundary layer. 
Incidentally they are equivalent, apart from the absence of any curvature, to Hall's 
(1983) formulation of the Gortler problem. However, these equations offer no self- 
similarity, mainly because the two terms in the sum Su,,-a2Su scale differently: the 
first term is proportional, when expressed in similarity variables, to x-l and the second 
to xo. In other words, the normal scale of the perturbation expands with increasing x 
whereas the spanwise scale remains constant. Because of this difficulty, an extension of 
the Libby & Fox theory to (8) is impossible. The only two possibilities, which have 
emerged in the context of the Gortler problem, are either to adopt a quasi-parallel 
approximation (the route originally followed by Gortler himself and later perfected by 
many others; see e.g. Bottaro & Luchini 1995) or to resort to a numerical solution of 
the parabolic equations as proposed by Hall. However, the quasi-parallel approach can 
only be theoretically justified for a Gortler number larger than unity (Bottaro & 
Luchini 1995), and therefore certainly not for the present case which corresponds to a 
Gortler number of zero; the numerical approach is useful to explore the effects of 
varying initial conditions, but fails to give a general indication as to the eventual 
behaviour of the perturbation far from its source. 

However, there is a third choice: to look for a special wavenumber range in which 
the spanwise and normal scales are different enough that the structure of the equations 
simplifies and the determination of self-similar eigenmodes in Libby & Fox fashion 
becomes possible. This range is that of small wavenumber a, in the non- 
dimensionalization appropriate to (8) where the reference z-scale is 6, or more precisely 
the range 1/L < a < 1/S in dimensional form. At first it may appear that the small-a 
range should trivially coincide with a = 0, that is with two-dimensional behaviour. But 
this is only partially true. If the small-a limit of (8) is taken while keeping the product 
aSw of order unity, the result is (7), and for small but non-zero a these are not 
equivalent to the two-dimensional problem. For, even if a is small, Sw can be large 
enough to make the term iaw non-negligible in the continuity equation; indeed (7) are 
obtained in the case of a of order 1/L and w of order U,  whereas (8) refer to the case 
of a of order 1/S and w of order (6/L) U. Any intermediate case with 1/L < a 4 1/S 
and Sw of order (CCL)-~GU is still correctly represented by (7). 

4. Self-similar three-dimensional perturbations 
Within the system of equations (7), (7c) can be solved independently. On seeking a 

solution of the Libby & Fox form 6w = x-'h(r) the problem reduces to the ordinary 
differential equation 

h,,+&h,/2+s&,,h = 0, (9) 

with the boundary conditions h(0) = 0, h(m) = 0. Equation (9) can be solved 
numerically with ease. The first few eigenvalues of s are thus determined to be as given 
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FIGURE 1. 

k 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

' h  

0.786565917 
1.693645408 
2.627241 252 
3.572 7 15 439 
4.525352271 
5.48291 1661 
6.444 131 016 
7.408 368 052 
8.376653746 
9.357475 196 

D, 
29.277354800 
20.509 398414 
17.149057 187 
1 5.220 4 10 887 
13.92071 5467 
12.963900452 
12.21 8 500202 
1 I .609 771 265 
1 1.060 368 540 
10.412698579 

4 
6.849498 61 

0.239868 93 

1.641 19 x lo-" 

4.552 x 
- 1 . 8 7 ~  lo-' 

6.6 x lo-!' 
-2.0 x lo-"' 

- 1.72478993 

- 0.02281 3 52 

- 9.4690 x 1 0-5 

TABLE 2. Parameters of the three-dimensional modes 

in table 2. The corresponding eigenfunctions, normalized with the condition h,(O) = 1, 
are plotted in figure 1. 

Once (7 c) is solved, the solutions of (7 a,  b) can be divided up in two classes : one has 
6w = 0 and contains the two-dimensional modes calculated by Libby & Fox; the other 
has each of the modes of (9) in turn as excitation, and corresponds in the inviscid limit 
to the perturbations that exhibit algebraic growth. On lettering 6u = iax-'g($) and 
s,,, = ia.x-r--l/2 [r/g(t7)/2 + (r-;).fl?/)] equations (7a ,  b) become 

where similarity requires that r = s- I .  A few numerical solutions of (10) with the 
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FIGURE 2.  Longitudinal-velocity profiles g(7) for the first ten eigenfunctions of the 
three-dimensional perturbation, equations (10). 

boundary conditionsf(0) = g(0) = 0, g(c0) = 0 are plotted in figure 2. We thus obtain 
the key result that the first s-eigenvalue, namely 0.787, is less than 1, and therefore, the 
first r-eigenvalue, namely - 0.21 3, is negative. Therefore, while the w-component of 
this particular perturbation decays proportionally to x-O.'*', its u-component grows 
unboundedly as x+0.'13. 

5. Excitation of the instability 
In order to expand an arbitrary initial spanwise velocity profile into a sum of modes, 

we can cast (9) in a Sturm-Liouville form through a procedure similar to the one 
followed by Libby & Fox. On replacing i4 by -&,BTB/4,B?I, according to (2), we can 
easily rewrite (9) as 

(1 1) 
It follows that the eigenvalues are real and positive, and that the eigenfunctions form 
a complete set and are mutually orthogonal with weight ( & , B / & , ? I B ) .  Therefore an 
arbitrary disturbance 6w can be represented as 

( h T / 4 ,  B B ) B  +a, ?//4, ? I B )  h = 0. 

00 

6w = c b,x-+h,(y), 
k = l  

where, analogously to the Libby & Fox case reported in Appendix A, equation (A 6), 

and 
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Most often one will be interested in calculating the effect of an initial perturbation 
carried along by the oncoming stream, and therefore known at the leading edge x, = 0 
of the plate. When this is the case, (13) can be cast in a form valid at x, = 0 by 
changing the integration variable from 7 to y ,  so as to obtain 

b, = DLl ~ w ( x , , Y )  hk(y/-xf'2) (J'A/F:) dy (15) .c 
and noticing that q becomes infinitely large in the limit x, --f 0. The large-q behaviour 
of h,(v) can be obtained from a WKB asymptotic analysis of (9), and is given by 
h, FZ d,q(2sk-1) Fi(q) ,  where d, is a coefficient which can be estimated numerically 
(Appendix B). Therefore (15) for x, = 0 becomes 

The first ten values of d, and D,  are given in table 2. 

6. General order-of-magnitude considerations 
It may be tempting to dismiss the instability just described as one that can hardly be 

observed in practice since, after all, it only grows as xo '13 which is very slow, but in fact 
its consequences are very real. The key point here is not so much how fast the 
perturbation grows, but rather that it is not damped. In fact, the two-dimensional 
perturbations studied by Stewartson and Libby & Fox decay at least as x-', and 
therefore tend to disappear in the boundary layer. When a spanwise-velocity 
perturbation hits the leading edge, it is decomposed into a sum of modes of (9) which 
decay at least as x-O 7 8 i ,  and in this sense do not behave very differently from the two- 
dimensional case. At the same time, however, each of these modes is accompanied by 
the corresponding driven mode of (lo), the first of which is not damped. If no 
perturbation of the longitudinal velocity is present at the leading edge, the longitudinal- 
velocity profile associated with these modes must be exactly compensated by a suitable 
superposition of Libby & Fox modes, which certainly exists since these modes form a 
complete set, such that the initial longitudinal velocity perturbation is identically zero. 
Further down, however, the Libby & Fox modes decay, freeing the slowly growing 
unstable mode to emerge in its full amplitude, which can be larger than that of the 
driving spanwise perturbation. 

To estimate the order of magnitude of the longitudinal-velocity perturbations 
involved, we can start from (16). This equation says that a longitudinal perturbation of 
order unity, that is comparable to the basic velocity profile and thus capable of driving 
the boundary layer out of the linear small-perturbation regime, is generated by a 
spanwise perturbation such that aSwy' 5 7  = O( 1). On restoring variables in their 
physical dimensions, and using S for the typical p-scale, this translates to 

wS/v  = O(aS)-l. (17) 

(The same result could be arrived at by inspection of the continuity equation (7a)  : once 
a mechanism is established that couples the transverse and longitudinal components of 
velocity, aw must be comparable in order of magnitude to U / L ,  which by definition 
equals v/S2.)  

There are two possible physical interpretations of (17). In one, wS/v  can be read as 
a perturbation Reynolds number. Therefore, the first interpretation is that instability 
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occurs whenever the Reynolds number of the perturbation exceeds (a&)-’. Since the 
minimum value of (m3-l is approached near the end of the permitted a range where 
a FZ 1/6, and is unity, the earliest instability will occur at this end of the range. 
Therefore, we can say that the boundary layer becomes unstable when the Reynolds 
number of the perturbation becomes large compared to unity, independent of the 
Reynolds number of the unperturbedflow. 

From a slightly different viewpoint if a has its most unstable value, i.e. it is not far 
from 1/&, the product w8 z w/a in (17) can be interpreted as the order of magnitude 
of the circulation of the oncoming longitudinal vortex; therefore, an easy to remember, 
if slightly dramatic, interpretation of the result is that an externally introduced 
longitudinal vortex with a circulation somewhat larger than v can, if its size is 
comparable to the boundary-layer thickness, permanently disrupt a flat-plate Blasius 
boundary layer. 

7. Connection with bypass transition and temporal algebraic growth 
theories 

After many years of being led by Squire’s theorem to focus their attention onto a two- 
dimensional route to transition mediated by Tollmien-Schlichting waves, researchers 
in fluid mechanics today agree that an alternative mechanism exists : the so-called 
bypass transition. For instance, the recent review by Kachanov (1994), which is 
otherwise committed to the secondary instabilities and nonlinear breakdown of 
Tollmien-Schlichting waves, begins by saying : 

The physical mechanisms of the transition phenomenon depend essentially on the 
specific type of flow and on the character of environmental disturbances. For boundary- 
layer flows two main classes of transition are known (Morkovin 1968, 1984; Morkovin 
and Reshotko 1990). The first of them is connected with boundary-layer instabilities 
(described initially by linear stability theories), amplification and interaction of 
different instability modes resulting in the laminar flow breakdown. This class is usually 
observed when environmental disturbances are rather small. The second class of 
transition, usually called bypass, is connected with ‘ direct’ nonlinear laminar-flow 
breakdown under the influence of external disturbances. This is observed when high 
enough levels of environmental perturbations (free-stream disturbances, surface 
roughness, etc.) are present. 

In fact, bypass transition has for a long time been something that experimentalists 
observed but theoreticians could not explain. Experiments since those of Klebanoff, 
Tidstrom & Sargent (1962) have displayed features, in particular longitudinal low- 
velocity streaks, which are completely extraneous to the linear theory of two- 
dimensional Tollmien-Schlichting waves. Only under very low levels of free-stream 
turbulence, as are probably present in the high atmosphere but are very hard to 
reproduce in a wind tunnel, can the linear evolution of Tollmien-Schlichting waves be 
observed. Actually, in order to overcome environmental disturbances, in most 
experiments Tollmien-Schlichting waves are artificially generated by a periodic 
excitation of appropriate frequency. Thus for a long time experimentalists have been 
seeing streaks and theoreticians have been predicting Tollmien-Schlichting waves, 
ascribing the mysterious bypass transition to something that escaped linear small- 
perturbation theory and with it Squire’s theorem. The above except from Kachanov 
(1994) stil1,reflects the common view that an unspecified ‘direct’ nonlinear mechanism 
driven by large values of environmental disturbances is at the origin of bypass 
transition. 
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On the other hand, a linear mechanism likely to be responsible for the Klebanoff 
streaks has been emerging during the 1980s and 1990s under the names of lift-up and 
algebraic grotvrh. 

Initially, a physical mechanism was identified according to which a longitudinal 
externally generated vortex grazing the wall would lift up low-velocity fluid on one side 
and drive down high-velocity fluid on the other, thus creating a streak-like spanwise 
non-uniformity in the near-wall velocity; it was thus gradually recognized that the 
exponential growth of a single dominant mode was not the only relevant amplification 
mechanism provided by linear theory. In particular, Ellingsen & Palm (1975) and 
Landahl (1980) analysed the lift-up mechanism in the context of inviscid-flow theory 
and found that if the flow field has no streamwise variation (Ellingsen & Palm) or at 
least contains a Fourier component with zero streamwise wavenumber (Landahl) the 
streamwise-velocity non-uniformity accumulates indefinitely and grows linearly in 
time. Hultgren & Gustavsson (1981) observed that in the presence of viscosity an 
initially inviscid growth phase is followed by viscous decay. 

In more recent years, while the linear lift-up phenomenon and its subsequent 
nonlinear evolution were being more and more clearly observed in numerical 
simulations (e.g. Henningson, Lundbladh & Johansson 1993, and papers referred to 
therein), the role of algebraic growth, including but not limited to the lift-up 
mechanism, was put into a new mathematical perspective by the method of 
pseudospectra (as described in the review by Trefethen et al. 1993, and references 
therein). In elementary calculus one is taught that the solution of a system of linear 
differential equations with constant coefficients is composed of a sum of exponentials, 
if the eigenvalues of the coefficient matrix are all distinct, or of exponentials multiplied 
by algebraic polynomials of time, if multiple eigenvalues occur. (A polynomial by itself 
can also occur, if the multiple eigenvalue happens to be zero.) One is also taught that 
this (sometimes called ' secular', a term borrowed from astronomy) polynomial 
behaviour is gradually approached as exponentials with similar exponents tend to each 
other. However, no secular behaviour takes place if the coefficient matrix is self- 
adjoint, and several matrices naturally occurring in physics are. Even though the 
general small-perturbation problem in fluid mechanics is well known not to be self- 
adjoint, for a long time it was more or less unconsciously assumed to behave almost 
as if it were. The non-coincidence of left and right eigenvectors was considered a mere 
technicality. 

The method of pseudospectra, instead, provides a way to measure the departure 
from self-adjointness, and shows that when this departure is great, and in several fluid 
mechanics problems it is, the asymptotic exponential behaviour dictated by eigenvalue 
analysis may be overshadowed by a significant transient phase of algebraic growth, just 
as in the occurrence of lift-up, in some situations lasting long enough to make the 
exponential phase unobservable in practice. Numerical examples of this behaviour 
have been produced with reference to the time evolution of perturbations transiently 
imposed onto an otherwise steady base flow, both in actual fluid mechanics problems 
and in low-dimensional model systems (Bagget, Driscoll & Trefethen 1995). 
Mechanisms have been also proposed according to which the combination of an 
energetically small nonlinear mixing and energy-producing linear algebraic ampl- 
ification might constitute the central feedback loop of turbulence generation (Boberg 
& Brosa 1988; Trefethen et al. 1993). 

The three-dimensional boundary-layer instability analysed in the present paper adds 
two twists to the above framework. First, it is an instance of algebraic growth in space 
rather than in time. That is, it applies to the situation, more often encountered in 
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experiments, in which a disturbance is applied at a specified upstream spatial location 
for all time rather than at a specified time throughout all of space. Secondly, it is an 
instance of algebraic growth (in particular, of the lift-up type) in a non-parallel base 
flow : a growing boundary layer. Non-parallelism has the peculiar consequence that, at 
least within the boundary-layer approximation (7), the algebraic growth goes on 
indefinitely even in the presence of viscosity, whereas in parallel flow the algebraic 
growth is always eventually followed by viscous decay (if the phenomenon remains 
linear up to that stage). 

The final question is, of course: can the present theory describe bypass transition as 
seen in the experiments? At present we can only provide a tentative answer. 

The most important parameter that the present theory should try to predict is the 
threshold where the u-component perturbation, extrapolated according to linear 
evolution, attains the same amplitude as the base flow, presumably a reasonable 
approximation of the threshold where transition is observed to occur in experiments. 
However, there are several reasons why this prediction can only be qualitative. One is, 
of course, that nonlinear phenomena take place once the amplitude of the perturbation 
becomes large. An additional difficulty is that, the driven 8u perturbation being 
proportional to a, the maximum conversion of spanwise into longitudinal energy takes 
place near one end of the allowable a range, namely for a x I/&, where the 
approximation of replacing (8) by (7) becomes inaccurate. (Notice that this 
phenomenon is simultaneous with the onset of nonlinearities : just as at the beginning 
of the boundary layer the amplitude of the perturbation is small and later becomes 
comparable to that of the base flow, at the beginning of the boundary layer the local 
8, which increases with x, will be small compared to l / a ,  which is fixed by the oncoming 
disturbance, and only at the position where the instability becomes visible will a& be 
of order unity and (7) become inaccurate. But by this stage (8) themselves are 
insufficient and only the nonlinear equations (6) can be relied upon.) Therefore, all we 
can say is that maximum conversion takes place around a wavenumber which is of the 
order of 1/6 in both the z- and y-directions, and that the corresponding amplification 
is proportional, through a presently unknown O( 1) constant, to aL, that is to L/8, or 
to R, = (R,-)l'' (in amplitude). In energy the amplification will be squared, that is to 
say, proportional to (L/8)' or R,2 or R,. 

This means that, for instance, in order to provoke transition at a position 
corresponding to a Reynolds number R, = 5 x lo5, as in the recent experiment on free- 
stream induced turbulence by Westin et d. (1994), one would have to inject a 
perturbation of energy 2 x 10+V in the right wavenumber range of order 1/8. 
Unfortunately, it is very difficult to say whether the turbulence-generating grid used by 
Westin et al. did just that, even though the authors took great care to create precisely 
characterized free-stream conditions. What seems apparent is that they did have 
sufficient energy, since the measured r.m.s. value of crossflow fluctuations upstream of 
the leading edge was O.O15U, and therefore the total injected energy over all 
wavenumbers was 2 x lOP4V against an amplification of (the order of) 5 x lo5; 
however, even though the paper gives detailed autocorrelation data, it is very difficult 
to say how much of this energy fell in 'the right wavenumber range' until we know 
more precisely where this range is. (It would make a lot of difference if it were, say, 
around 1/58 rather than around l/&). 
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8. Conclusions 
A three-dimensional mode of instability of the Blasius boundary layer over a flat 

plate has been described, which results from the competition between inviscid algebraic 
growth and viscous dissipation. Whereas in a parallel flow the viscous dissipation 
eventually wins and converts the algebraic growth into exponential decay, in an 
expanding boundary layer the viscous dissipation only provides algebraic decay, and 
turns out to be insufficient to compensate the algebraic growth. 

A distinguishing feature of this boundary-layer instability is its independence of the 
Reynolds number of the unpertubed flow. Such independence trivially follows from the 
fact that the phenomenon is governed by Prandtl’s standard boundary-layer equations, 
where the Reynolds number has been scaled out. I t  follows that such an instability can 
be excited (by a large enough spanwise perturbation) however early in the development 
of the boundary layer, and therefore can provide a driving mechanism for those 
experimentally observed phenomena of early transition under moderately large 
disturbances that go under the name of bypass transition. 

A qualitative comparison with experimentally observed orders of magnitude make 
the spatial boundary-layer instability described in the present paper a good candidate 
for the initial linear-amplification stage of bypass transition, opening the way to a 
better understanding of the origins of this phenomenon. 

From a fundamental viewpoint, realizing that an instability can occur within the 
limits of the Prandtl approximation significantly affected the author’s own insight 
about boundary-layer theory. In addition to allowing for the existence of a Reynolds- 
number-independent instability, the newfound capability of the boundary-layer 
equations to model at the least some instability, in a world where fluid-flow instabilities 
do happen, lends new confidence to their modelling power. 

This work was funded by the Italian Ministry of University and Research. The 
presentation of the paper profited significantly by the suggestions of the Editor and 
Reviewers of the Journal of Fluid Mechanics. The first attempts at investigating this 
problem arose during research on Gortler instabilities performed at the Leonhard 
Euler ERCOFTAC centre in EPFL, Lausanne, Switzerland, whose kind invitation is 
also acknowledged. An accidental mistake was discovered and corrected thanks to 
D. S. Henningson. 

Appendix A. The calculation of Libby-Fox mode amplitudes from 
incident free-stream perturbations 

amplitudes begins with the sturm-Liouville equation 
The procedure proposed by Libby & Fox (1964) for the calculation of initial mode 

[(F:/F,”) H’]’ + (rFh4/F: - F;, F Z )  H = 0 (A 1) 

for the auxiliary function H = (,V/Fh)’ and consists of applying the orthogonality 
relation appropriate to this equation, i.e. 

where 

C, = lox (H,)2 (F1;2/F’;) d7l. 
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Therefore, with an initial condition 6F(xi, 7) given at a certain non-zero abscissa xi ,  the 
perturbation solution was written by Libby & Fox as a mode expansion of the form 

m 

6F=  k = l  C A , E r N , ( y ) ,  

where N,  denotes the kth eigensolution of (4), normalized with the condition NVV(0) = I ,  
and r, is the corresponding eigenvalue. The mutual orthogonality of the functions 
H ,  = (N,/Fh)’ allows the coefficients A ,  to be determined as 

A ,  = Cil lom [#‘(xi, y)/F;]’ [N,/F;]’ (F;‘/F’3 dy. (A 5 )  

Libby & Fox’s analysis of the modal expansion stops here (they then proceed to apply 
their technique to the solution of some specific incompressible and compressible 
boundary-layer problems). It may thus appear that, owing to the singularity of the 
similarity variables at x = 0 (A 4)-(A 5 )  only apply when the initial condition is given 
at a non-zero xi. However, if (A 4) is rewritten in terms of the coefficients a, = A,xp, 
as 

it 
is 

m 

SF= c a,x- ‘”N,(~)  (A 6) 
k = l  

becomes evident that the coefficients a, must be independent of the abscissa xi that 
chosen for the purpose of calculating them. In other words, the expressions 

[6F(xi, Y/)/FJ‘ [N,/F3’ (Fh4/F3 dq, (A 7 )  

when considered as functions of xi, are constants of the motion. Since the coefficients 
a, are constant, their limits for xi --f 0 trivially exist. Therefore, the expansion coefficients 
may as well be calculated from the initial profile of the free-stream perturbation given 
at xi  = 0. 

In order to cast (A 7) into an explicit limiting form, let us first integrate by parts to 
obtain 

(A 8) @(xi, 7) L,(q) dq, 

where 

Now, on restoring the original variables x, y and 6+(x,y) = xli2SF(x, r), (A 7) can 
also be written as 

a, = Cil s,’ S$(xi,y) L,(Y/X;’~) x2-l)  dy. (A 10) 

The limit for xi + 0 of L,(y/x:”)  XI'^-^) is non-zero and finite (as it must be, since a k  

is independent of xi); for, we can in this limit replace L,(q) by its behaviour for large 
7, which is L, - q2(‘k- ’ )  as can be obtained either directly from a WKB analysis of (4) 
or from the method of Appendix B, and therefore (A 10) becomes 
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or equivalently 

with ck denoting a new constant. 
This is the required expression for the expansion coefficients in terms of the initial 

perturbation profile given at xi = 0. The first ten values of the coefficients ck and C, are 
given in table 1. The procedure used to estimate the asymptotic coefficients ck is 
detailed in Appendix B. 

Appendix B. Limiting behaviour of the eigenfunctions for large 7 

its large-q behaviour, namely 
In order to derive an asymptotic approximate solution of (4), we can replace F, by 

F, = 71 - u + exponentially small terms, (B 1) 

where, from the numerical solution of Blasius’ equation (2), a = 1.720787657. 
Equation (4) thus reduces to 

N,,,, + i(q - a )  N , ,  + rN,, = 0, (B 2) 
which can be recognized as a Hermite equation in the unknown N7. A solution of 
(B2) can be expressed, to within an arbitrary multiplicative constant, through the 
Laplace-transform integral 

dP. (B 3 )  p - 1  e pZ+(,j-a)p 
N ,  = J=+ 

The solution branch that is finite at positive infinity is selected when the complex path 
of integration runs on the left side of the branch point that for general values of r 
appears at the origin of thep-plane. (For semi-integral values of r the Hermite function 
reduces to a Hermite polynomial times a Gaussian exponential, but this is not the 
present case.) If, in particular, we move the integral to the steepest-descent path 
through the saddle point p = - (ti  - a ) / 2 ,  by writing p = - (4 - a) /2  + ip’, (B 3) may be 
recast as 

where 

and C(q-a) -f 1 for q+ CD. Therefore (B 4) represents the asymptotic behaviour of 
N J  q )  for --f a. According to (B l), this may also be equivalently written as 

(B 6) 

In Appendix A we have used the asymptotic large-q behaviour of the quantity L, 
N ,  + ( ~ ~ ) 2 7 - 1  P O  e-~:‘i4 [C(F,) +exponentially small terms]. 

defined by (A 9). On using (B 1) again, we can recast (A 9) as 

L, = - (Nk/Fi)’ +exponentially small terms, 

L, z c1 ,p--’L. 

(B 7 )  

(B 8) 

i.e. from (B 4) with C(q-a) replaced by 1 and from F,‘ - e-(7-a)2i4, 

which is the result we needed in the derivation of (A 11). 
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The coefficient ck has to be computed from the numerical solution of the full 
equation (4), since it depends critically on the boundary conditions given at zero and 
not only on the behaviour at infinity. 

A straightforward procedure would be to calculate the ratio Lk/y2rk-2  for increasing 
values of 7 until this ratio approaches a recognizable limit. However, this naive method 
is bound to give very poor results. This is because the relative error within which the 
asymptotic behaviour (B 8) is approached is O(I/q), and continuing the numerical 
solution to very large values of 7, in addition to being expensive, is also inaccurate 
because of the superposition of truncation and roundoff errors over the rapidly 
decreasing O[e-(~-a)z’4] solution. 

A much better estimate of ck can be obtained from the ratio between a numerical 
solution of (4) and an exponentially accurate asymptotic approximation of the same 
solution. If in equation (B 6) the function C(&) is retained as a corrective coefficient 
rather than replaced with its limit, we can write 

so that c, can now be obtained with much greater precision if C ( 4 )  is known. (In other 
words, rather than estimating ck from the ratio between the numerical solution and its 
leading asymptotic behaviour, we are now estimating it from the ratio between the 
numerical solution of the complete equation and the solution of its asymptotic form 
(B 2).) The only remaining task is to calculate the solution of the Hermite equation (B 2), 
or equivalently the corrective coefficient C(F,). Whereas asymptotic power expansions 
of Hermite functions are available in analytical form in textbooks, the precision 
available with those expansions is still limited by their very asymptotic character. On 
the other hand an efficient method, which can be used to evaluate with arbitrary 
precision any special function for which an integral representation is known, was 
introduced by Luchini & Bassano (1991). It consists quite simply of calculating the 
steepest-descent complex integral (in the present case, (B 5)) by numerical quadrature. 
In fact, for the unbounded integral of an analytic function that decays exponentially 
at infinity almost any discretization method yields exponential accuracy, even the lowly 
constant-step, constant-weight summation. The choice of the steepest-descent path, or 
of one close to it, ensures a smooth non-oscillatory behaviour of the integrand so that 
even a moderate number of sampling points is sufficient to obtain a high accuracy. 

The values reported in table 1 were obtained by calculating Nk and &, simultaneously 
with their derivatives, through a fourth-order Runge-Kutta shooting method and 
C(&) by midpoint constant-step, constant-weight quadrature of (B 5). Using 30 
sampling points in the numerical quadrature (from p’ = 0 to p‘ = 6 with step 0.2) 
yielded the accuracy shown. A similar procedure was used for table 2. 
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